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Abstract

The purpose of this paper is to present a solution for the peeling moment arising from the peeling stress distribution
in any interface in a multilayer beam or plate. The solution is implemented for three- and four- layer beams; it is shown
that it can readily be implemented for any desired number of layers. The solution is derived from first principles, and is
evolved from the well known [Timoshenko, A. 1925. Analysis of bi-metal thermostats. Journal of the Optical Society of
America, 11, 233–255] bimetal thermostat analysis. A physical interpretation of the factors that make up the peeling
moment is given, enabling quick identification of how any layer property may be changed in order to resist delamina-
tion at any interface of interest. The concept of moments being transferred across the interface to cause equal radii of
curvature is helpful in understanding the factors that influence the magnitude and direction of the peeling moment at
any interface. This analytical method applies equally to multilayer stack-ups cured simultaneously at a common tem-
perature, and to products such as integrated circuit wafers where the layers are formed sequentially at different
temperatures.
� 2004 Elsevier Ltd. All rights reserved.
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1. Background

Consider a beam (or plate) built up from two or more layers bonded together at each interface. The
materials of the layers may have different coefficients of thermal expansion (CTE). The bond at any inter-
face may be formed at a temperature different from the temperature at which any other interface is bonded.
The beam may be used at a temperature different from any bonding temperature.
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Thermomechanical stresses will arise in the beam causing the beam to bend as a result of the different
CTEs of adjoining layers. Equal and opposite shear stresses occur at the adjoining surfaces at an interface
in order to achieve identical displacements there. One side of the interface is subject to axial compression
and the other to axial tension. Reaction forces arise in the axial direction within the stack-ups on either side
of the interface, one compressive and one tensile in response to the enforced strains in the axial direction.
The net effect of the reaction force in a stack-up lies along the neutral axis of the stack-up.

The shear force at the interface and the net reaction force within the layer are offset, and these create a
bending moment on the layer, and corresponding bending stresses. Generally these moments alone do not
cause identical radii of curvature of the two layers, so additional peeling stresses arise at each interface.
Timoshenko (1925) provided a solution for the axial and bending stresses in both layers of a bimaterial
beam, for the total shear force generated at the interface, and for the radius of curvature. However, his
solution did not deal with the peeling stress except to observe that both shear and peel were concentrated
near the free ends.

Hess (1969a) developed an eigenfunction solution for end-loading in a two-layer beam; the solution was
truncated to 30 terms. He superimposed this on Timoshenko�s solution for the thermal loading in a bima-
terial beam (Hess, 1969b). This enabled the distribution of shear and peeling stresses to be determined; both
were concentrated near the free end. The shear stress was equipollent, and decayed to a negligible value at
the free end. On the other hand the peeling stress always changed sign in that region and terminated with its
maximum value at the free end. Hess found that where both the modulus of elasticity and thickness of one
layer were greater than those of the other, the sign of the peeling stress could be determined by a simple
formula; however in the general case it was unpredictable.

Chen and Nelson (1979) adapted lap joint theories to examine various joints bonded with compliant
adhesives under temperature change in electronic packaging. One such joint was equivalent to a simply sup-
ported bimaterial beam; in this the peeling stress reduced to a sixth order differential equation. As in the
Hess solution, the peeling stress changed sign close to the free end; however the shear stress continued
to increase to its maximum value at the free end rather than reduce to zero to meet equilibrium conditions.

Various simpler approximate solutions have been developed over the years for the peeling stress in bima-
terial beams. Many are adapted from Timoshenko�s solution. Suhir (1986) added the concept of interfacial
compliance and suggested as an approximation that a deviation of longitudinal displacement from that pre-
dicted by Timoshenko was proportional to the local interfacial shear stress. The equations were relatively
simple to resolve but the resultant interfacial shear and peeling stresses differed from results from FEM and
Hess�s method (Eischen et al., 1990). Ru (2002) adapted Suhir�s approach by suggesting that the deviation
of the longitudinal displacement from the Timoshenko model was dependent not only on the local interfa-
cial shear stress, but also on its second derivative; his approximation gave fourth order derivatives in which
the constants were easily computed, and the solution was consistent in form to the results as given by
Eischen.

The approximate approaches were extended to include multilayer beams in which all layers were bonded
at a common temperature. Grimado (1978) examined multilayer beams by focussing on one interface and
using a set of effective averaged properties for the portion of the stack above the interface and another set
for the portion below; he used a compliant adhesive to remove the free edge singularities, and developed a
single sixth-order differential equation to determine the axial forces in the beam, and from that the remain-
ing stresses in the interface in question. Pan and Pao (1990) presented a set of first order equations based on
conventional thin plate theory to determine displacement and strain in multilayer plates; shear and peeling
were not included. Pao and Eisele (1991) extended the approach of Suhir (1986) to multiple layers to gen-
erate a coupled series of linear second order differential equations; the solution did not deliver the expected
change of sign of the peeling stress near the free ends. An exact solution for bending and axial stress in
multilayer beams was developed where a relatively thick substrate bore thin film layers, also bonded at a
common temperature (Hsueh, 2002); again peeling and shear were not addressed.
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Moore and Jarvis (2003) presented a simple beam theory solution for peeling in a bimaterial beam under
a uniform change in temperature. This enabled prediction of the sign of the peeling stress at the free end; it
applied with certainty for all cases irrespective of layer thickness and elasticities. They extended
Timoshenko�s work to get a simple formulation for the moment arising from the naturally occurring
reversal of the peeling stress distribution in the interface. The sign of the peeling moment could be deter-
mined by inspection, being dependent only on the thickness and elasticity of each layer and the sign of the
radius of curvature (which itself could be determined by inspection). A positive peeling moment gave a
tensile peeling stress at the free edge, i.e. promoting peeling; a negative peeling moment gave a compressive
peeling stress at the free edge, i.e. resisting peeling and delamination.

In the present paper this work is extended to determine the peeling moment in each interface in a multi-
layer beam, including the bonding of each interface at a different temperature. The solution can be readily
implemented in a spreadsheet, permitting fast analysis of the effect of varying the properties of any layer or
bonding condition.

In Section 2 the formulation of the peeling moment in the bimaterial beam is restated in a manner that is
easily extended to additional layers. This formulation is extended to any interface in a multilayer beam of
four layers (Section 3). In Section 4 the proof is developed for the three-layer beam, while in Section 5 the
proof is demonstrated for all interfaces in a four-layer beam. The remaining sections contain validation of
the results by the finite element method (FEM), a brief discussion on the application of the solution, and
conclusions from the work.
2. Transfer of peeling moment across the interface

In this section a general interpretation of the peeling moment is developed, in which a simple description
of the moment at the interface in a bimaterial beam is presented.

Consider the bimaterial beam of Timoshenko; its cross-section is shown in Fig. 1. Let Ei, hi and ai be the
elastic modulus, thickness and CTE where i = 1 or 2. Let T1 be the temperature at which the interface be-
tween layers 1 and 2 are bonded.

A change in temperature causes reaction stresses in each layer in response to the enforced identical axial
displacement at the interface; remote from the ends of the beam the summation of stresses in a cross-section
of the layer is equivalent to a single reaction force acting through the neutral axis (NA1 or NA2) of the
respective layer. The distances from the neutral axes of each layer to the interface are h1/2 and h2/2, respec-
tively. The sum of these distances gives the moment arm (arm) between the reaction forces. The fractions of
the moment arm that lie in the upper layer U and lower layer L are
U ¼ h1=2
h1=2þ h2=2

and L ¼ h2=2
h1=2þ h2=2

ð1Þ
while the sum of these fractions is unity.
Fig. 1. The interface between the layers of a two-layer beam, and the division of the moment arm across it.
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The peeling moment acting on the lower layer from Moore and Jarvis (2003) is
Mp ¼
h1E2I2 � h2E1I1

ðh1 þ h2Þq
ð2Þ
where q is the radius of curvature of the beam. This can be restated as
Mp ¼ U
E2I2
q

� L
E1I1
q

ð3Þ
But E2I2/q is the moment required to bend the lower layer to radius q, and similarly E1I1/q is the moment
required to bend the upper layer. Thus the peeling moment at the interface is made up of the upper fraction
U times the moment to bend the lower layer, less the lower fraction L times the moment required to bend
the upper layer.

The physical explanation for this constitution in Eq. (3) is developed in Appendix A. There it is shown
that the peeling moment in a bimaterial beam can be considered as the sum of the moments transferred
across the interface into and out of the lower layer; these are the contribution of the reaction in the upper
layer to the bending in the lower layer less the contribution of the reaction in the lower layer to bending in
the upper layer.
3. Proposition: general transfer of moments by the peeling stress

When a third layer is attached, an additional phenomenon occurs. There is a pair of layers forming a
stack-up on one side of the interface and a single layer on the other. The stack-up (say layers 1 and 2) is
bonded at a particular temperature and forms a bimaterial beam. At the temperature at which the second
interface is created (bonding of layer 3 to layer 2) the bimaterial beam would be bent to radius of curvature
q12. However for bonding the second interface the bimaterial beam is required to be straight; for this a tem-
porary external moment of �M12 is applied. A corresponding reaction moment arises within the bimaterial
beam to oppose the temporary straightening moment. The reaction moment M12 at the temperature T2 of
bonding of the layer 2 to 3 interface is
M12 ¼
E12I12
q12

ð4Þ
where E12 is the average modulus of elasticity weighted by the thicknesses of the layers, I12 is the moment of
inertia of the bimaterial beam with reference to its neutral axis NA12 (again weighted by the thicknesses
of the layers), and q12 is the radius of curvature of the free bimaterial beam at the temperature of bonding
of the second interface. The computation of average properties of stack-ups is done in accordance with the
methods used by Boley and Testa (1969) and Grimado (1978).

This proposition asserts that moments which arise on one side of the interface are transferred in part to
the other side by means of the peeling moment. The fraction of each moment that is transferred is the same
as the fraction of the receiving side (U or L) in the total moment arm between the neutral axes of the stack-
ups on each side of the interface. The peeling moment is the algebraic sum of these transferred fractions.

For example it can be stated that in a four-layer beam such fractional distributions of moments arises.
Taking the central interface, and counting layers from top to bottom, the division of the moment arm
across the interface between layers 2 and 3 is illustrated in Fig. 2. Let the radius of curvature of the
four-layer beam be q4.

There can be two simultaneous forms of moment in a stack-up. One moment is due to the action of the
interfacial shear on the layer, and the other moment is due to the bimaterial effect where the stack-up



Fig. 2. The interface between layers 2 and 3 of a four-layer beam, and the division of the moment arm across it.
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comprises of more than one layer (of course when the stack-up consists of only one layer this latter moment
is zero).

The bimaterial beam consisting of the lower pair of layers 3 and 4 has a reaction moment M34 arising
within it when it is straightened at the temperature T2 for bonding of interface the between layers 2 and 3:
M34 ¼
E34I34
q34

ð5Þ
where E, I and q are as defined following Eq. (4) except that they relate to layers 3 and 4 instead of layers 1
and 2.

The peeling moment in an interface is the algebraic sum of the portions of the moments that are trans-
ferred across the interface. Its general arrangement is set out in Eq. (6). Moments acting on the lower side of
the interface are positive, while moments which are the action from that side of the interface are negative.
This particular equation gives the peeling moment Mp acting on the lower stack-up in the middle interface
of a four-layer beam as shown in Fig. 2. The beam is bent to radius of curvature q4.
MP24 ¼ U � E34I34
q4

� L � E12I12
q4

þ L �M12 � U �M34 ð6Þ
This equation may be interpreted as meaning that all moments relating to the stack-up on one side of an
interface are distributed across the interface to the other side in proportion to the distances of the neutral
axes of each side from the interface. The explanation which follows is an interpretation of the role of the
component parts of this equation.

The first item on the right-hand side of the equation is the contribution from the action of shear on the
upper stack-up to bending the lower stack-up; it is acting on the lower stack-up and for this reason its effect
is positive.

The second item is the reciprocal contribution from the action of shear on the lower stack-up to bending
the upper stack-up; it is an action from the lower stack-up and for this reason its effect is negative.

The moment M12 relates to an independent bimaterial stack-up of layers 1 and 2 as described in Eq. (4).
This beam would take up a curvature q12 under the temperature change. The third item is the portion of the
moment M12 that contributes to bend the lower stack-up. It is acting on the lower stack-up and is thus a
positive fraction.



276 T.D. Moore / International Journal of Solids and Structures 42 (2005) 271–285
The final item is the portion of the corresponding moment M34 within the lower stack-up that contrib-
utes to bending the upper stack-up; it is an action from the lower stack-up and is a negative fraction. M34 is
determined in the same way as M12.

The equations for the peeling moments in the other interfaces are identical in pattern to Eq. (6).
The proposition can be extended in the same way to determine the value of the peeling moment at any

interface in a beam with any desired number of layers. In the next section the basis of the proposition is
proven.
4. Proof of the proposition—three layers

Consider the build-up of a multilayer beam with the uppermost layer as layer 1 and succeeding layers
numbered incrementally. Let Ei, hi and ai be the elastic modulus, thickness and CTE of a single layer i.
Let Ti be the temperature at which the interface between layers i and i + 1 are bonded. Let the centroids
of combinations of layers be calculated with reference to the top surface of the top layer. A sketch of
the first two layers is given in Fig. 3.

The bending in the bimaterial beam comprising of layers 1 and 2 may be computed following Timo-
shenko (1925) and the peeling moment may be computed following Moore and Jarvis (2003). This beam
is bent with radius q2.

To analyse the tri-layer beam it is necessary to treat a pair of layers as an equivalent single beam with a
built-in or residual moment. It is convenient to combine layers 1 and 2, although layers 2 and 3 may be
combined instead. It is not necessary to combine the layers in the sequence in which they are bonded.
The arrangement is shown in Fig. 4.

The thickness of the composite layer is h12, the sum of the thicknesses h1 and h2. The modulus of elas-
ticity is the average modulus of the two layers weighted by the layer thicknesses:
E12 ¼
E1h1 þ E2h2

h1 þ h2
ð7Þ
Fig. 3. Properties of layers 1 and 2.

Fig. 4. Properties of composite beam 1 and 2 and layer 3.



Fig. 5. Free-body diagrams of the two sides of the new interface.
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The neutral axis of the composite beam lies at the centroid of the beam, Cg12. The method of calculating the
centroid is as used following Fig. 5 of Timoshenko (1925), but expanded for clarity:
Cg12 ¼
E1h

2
1=2þ E2h

2
2=2þ E2h1h2

E1h1 þ E2h2
ð8Þ
The CTE of the composite layer is found in the same way
a12 ¼
a1E1h1 þ a2E2h2
E1h1 þ E2h2

ð9Þ
The moment of inertia I12 of the composite layer about its neutral axis (at Cg12) is
I12 ¼
1

E12

½E1I1 þ E1h1ðh1=2� Cg12Þ
2 þ E2I2 þ E2h2ðh1 þ h2=2� Cg12Þ

2� ð10Þ
The reaction moment M12 within this composite beam when it is straightened for bonding to layer 3 at tem-
perature T2 is given previously in Eq. (4).

Now consider the tri-layer beam, as shown in Fig. 5. The shear stress in the interface acting on a layer is
balanced by the reaction force P within the layer. Let M3 be the moment arising from the shear force of
magnitude P acting on layer 3, and let MC be the moment arising from the shear force P acting on the
stack-up of layers 1 and 2. The moment arms are h3/2 and h1 + h2 � Cg12, respectively.

A peeling moment arises in the new interface of the three-layer beam, between the stack-up of layers 1
and 2, and layer 3. It is designated MP23. Free-body diagrams of the forces and moments on the two sides of
the interface are shown in Fig. 5.

There are two moments acting to bend layer 3; these are M3 = Ph3/2 and the peeling moment, MP23.
There are three moments acting to bend the composite layer; these are MC = P(h1 + h2 � Cg12), together
with its reaction moment M12 and the peeling moment of opposite sign �MP23. The sum of all these mo-
ments causes the two layers to bend to q3; this sum is P(h1 + h2 � Cg12 + h3/2) + M12. Then rearranging to
get an expression for the reaction force P:
P ¼
E12I12þE3I3

q3
�M12

h1 þ h2 � Cg12 þ h3=2
ð11Þ
Using Timoshenko�s approach of compatibility of displacements in the interface between layers 2 and 3 we
can write for the condition at any temperature T where T2 is the temperature of bonding of the interface 2–3:
h1 þ h2 þ h3=2
q3

þ
E12I12þE3I3

q3
�M12

h1 þ h2 � Cg12 þ h3=2
� 1

E12ðh1 þ h2Þ
þ 1

E3h3

� �
¼ ða3 � a12Þ � ðT � T 2Þ ð12Þ
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From this the expression for 1/q3 is obtained:
1

q3

¼
ðh1 þ h2 � Cg12 þ h3=2Þða3 � a12Þ � ðT � T 2Þ þM12 � 1

E12ðh1þh2Þ þ
1

E3h3

� �

ðh1 þ h2 � Cg12 þ h3=2Þ2 þ ðE12I12 þ E3I3Þ � 1
E12ðh1þh2Þ

þ 1
E3h3

� � ð13Þ
This Eq. (13) can be rearranged as
1

q3

¼ ða3 � a12Þ � ðT � T 2Þ
ðh1 þ h2 � Cg12 þ h3=2Þ þ ðE12I12þE3I3Þ

ðh1þh2�Cg12þh3=2Þ
� 1

E12ðh1þh2Þ
þ 1

E3h3

� �

þ M12

ðh1þh2�Cg12þh3=2Þ2

1
E12ðh1þh2Þ

þ 1
E3h3

� � þ ðE12I12 þ E3I3Þ
ð14Þ
The first part of the right-hand side of this equation is identical to the Timoshenko formulation for a bima-
terial beam consisting of an upper layer of thickness h1 + h2 (with the weighted average properties of the
composite beam from layers 1 and 2) and layer 3 as the lower layer. The second part is the bending of
all three the layers arising from the reaction moment M12 within the composite beam.

The effects of the Timoshenko bending and the reaction moments remain separated throughout the anal-
yses below.

As shown in Fig. 5, the moments acting to bend layer 3 are Ph3/2 and MP23, where MP23 is the peeling
moment in second interface of the three-layer beam:
1

q3

¼ M3 þMP23

E3I3
ð15Þ
From which, using M3 = Ph3/2 and substituting from Eq. (11) for P:
MP23 ¼
E3I3
q3

� h3=2
h1 þ h2 � Cg12 þ h3=2

E12I12 þ E3I3
q3

�M12

� �
ð16Þ
But the multiplier outside the square brackets is the lower fraction of the moment arm L, computed in the
same manner as in Eq. (6). Remembering that U + L = 1, Eq. (16) can be rearranged as
MP23 ¼ U
E3I3
q3

� L
E12I12

q3

þ L �M12 ð17Þ
Thus MP23 is the sum of the fractions of the moments transferred across the interface, as proposed in Sec-
tion 2. As mentioned above, the effects of the simple bimaterial bending and the reaction moment M12 are
clearly separated.

The peeling moment in the upper interface of the three-layer beam is labelled MP13. It can be found by
following the same sequence of analysis as in this section with the stack-up of layers reversed.
5. Four layers and beyond

In a four-layer beam, the logic of the previous section is followed in order to obtain MP34 and in the same
way, MP14; these are the peeling moments in the two outer interfaces. The analysis starts by treating the tri-
layer beam examined in Section 4 as a composite beam with properties shown in Fig. 6. This is then at-
tached to layer 4, and the analysis continues exactly as in Section 4.



Fig. 6. Properties of composite beams 1 and 2 and 3, and layer 4.

T.D. Moore / International Journal of Solids and Structures 42 (2005) 271–285 279
It will be found that the format of MP34 is very similar to that of MP23:
MP34 ¼ U
E4I4
q4

� L
E13I13

q4

þ L �M13 ð18Þ
For the peeling moment at the central interface MP24, the equation is also readily obtained. The arrange-
ment of the layers comprising this interface is shown in Fig. 7.

The moments acting on the lower stack-up (made up of layers 3 and 4) to cause it to bend to q4 at the
bonding temperature of the second interface T2 are
E34I34
q4

¼ P � ðCg34 � h1 � h2Þ þM34 þMP24 ð19Þ
where P is the reaction force to shear in the second interface of this four-layer beam, and M34 is the moment
within the stack-up of layers 3 and 4 when it is straightened for bonding at temperature T2.

The moments acting on the upper stack-up (layers 1 and 2) to cause it to bend to q4 are
E12I12
q4

¼ P � ðh1 þ h2 � Cg12Þ þM12 �MP24 ð20Þ
Adding these equations eliminates MP24 and yields:
P ¼
E34I34

q4
þ E12I12

q4
�M12 �M34

ðCg34 � Cg12Þ
ð21Þ
Fig. 7. Properties of composite beams 1 and 2 and 3 and 4.
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Substituting this into Eq. (19) and taking MP24 to one side gives:
Table
Layer

Layer

1
2
3
4

Table
Peeling

Interfa

Peeling
Shear
MP24 ¼
E34I34

q4

� ðCg34 � h1 � h2Þ
ðCg34 � Cg12Þ

� E34I34
q4

þ E12I12
q4

�M12 �M34

� �
�M34 ð22Þ
Note that the multiplier before the expression in square brackets is the fraction L of the moment arm be-
tween the upper and lower neutral axes with respect to the second interface of the four-layer beam. Since
U + L = 1, Eq. (22) can be rearranged as
MP24 ¼ U � E34I34
q4

� L � E12I12
q4

þ L �M12 � U �M34 ð23Þ
Note the similarity to Eq. (18) with the introduction of the second reaction moment, M34; the upper com-
ponent of this moment is transferred across the interface. This demonstrates again the validity of the prop-
osition set out in Section 3.

It has been directly shown for both an exterior interface (i.e. the third interface of the four-layer beam)
and an interior interface (i.e. the second interface of the four-layer beam) that the peeling moment is com-
posed of the algebraic sum of the moments transferred across the interface. It is clear that the peeling mo-
ments at the interfaces in a beam with additional layers may be computed in the same fashion. As the
analytical method is iterative, it lends itself to easy implementation in a spreadsheet.
6. Example results

The analyses described above were implemented in MathCAD for a sample beam comprising of four
layers. The properties of the beam are set out in Table 1 with layer 1 on the top of the stack-up and layer
4 on the under-side. A beam half-length (W/2) of 50mm, and a uniform temperature change of �240 �C
were selected.

These properties were used to find the peeling moments and interfacial shear forces in the three interfaces
of the beam. The results are given in Table 2 for the actions on the lower side of the interface. The actions
on the upper side of the interface are of opposite sign.

The geometry and materials of this sample beam were chosen in order to ensure a non-graduated stack-
up of CTEs, thicknesses and moduli of elasticity. They were not selected with any real-life application in
mind, but rather to deliver an example with positive peeling moments in all interfaces.
1
properties for a sample four-layer beam

no Thickness (m) Coefficient of thermal expansion/�C Elastic modulus (N/m2)

8.0E�4 29.0E�6 90E+9
5.0E�4 12.4E�6 20E+9
6.0E�4 2.0E�6 100E+9
4.0E�4 15.0E�6 180E+9

2
moment and interfacial shear forces acting on lower surface of each interface in sample four-layer beam

ce 1–2 2–3 3–4

Moment (Nm) +17.82 +47.05 +24.70
Force (N) �67,080 �51,800 +112,200



Table 3
Y-displacements (in metres) at all interfaces by three methods

Interface 1–2 2–3 3–4

Beam theory analysis FEM 2.932E�3 2.932E�3 2.932E�3
bonded beam FEM + theory 2.930E�3 2.930E�3 2.930E�3
Upper stack-up 2.938E�3 2.924E�3 2.931E�3
Lower stack-up 2.931E�3 2.938E�3 2.942E�3
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7. Results of theory demonstrated by FEM

These beam structures were analysed with finite elements using ANSYS 6.1. The FEM model consisted
of a four-layer beam with all layers bonded, plus a separate replication of each layer as an independent
beam. This followed the method used by Moore and Jarvis (2003). It was adapted to permit one or two
layers to be omitted if desired. Thus it provided for applying to the relevant layer or partial stack-up the
shear force and peeling moment as determined from the beam theory analysis. This allowed demonstration
that the Y-displacements as computed by beam theory (Uy = W2/2q) were also found by the FEM ap-
proaches, both in the bonded beam and the independent layers estimations.

In the FEM structure the half-beam to one side of a vertical line of symmetry was modelled; all layers
were identical with 456 four-noded elements of PLANE42 type for each layer, in plane stress. The greater
portion of the elements in each layer was concentrated in the 10% of the length close to the free edge. In the
FEM the reference temperature for each layer was set at zero, and a thermal load of �240 �C was applied.
The resulting Y-displacements at each interface are set out in Table 3. This table compares the results from
the beam theory method, the FEM of a bonded beam, and the analysis by FEM of a single layer or partial
stack-up when the shear force and peeling moment results from the beam theory method are applied to it.

For the separate stack-up analyses the shear force was applied to the node at the free edge of the inter-
face surface of the stack-up, and the moment was applied as a pair of forces acting vertically through the
same node and the next neighbouring node—located 0.00025m inboard of that. The temperature change of
�240 �C was applied.

Convergence of the FE model was validated by rerunning all analyses using PLANE82 eight-noded ele-
ments. This resulted in 11,521 nodes, instead of 2964. All values in Table 3 were unchanged to four signif-
icant digits in the new analysis.

There is clearly a concurrence of all Y-displacement values irrespective of how they were determined. As
expected, the results from the beam theory method are identical to the results from the four-layer FEM
within less than 0.1%. The demonstration of the theory lies in the results obtained by applying the shear
force and peeling moments from beam theory to the partial stack-ups in FEM. In the worst case these
had a Y-displacement error of less than 0.3% of the beam theory displacement.
8. Discussion

The objective of the analysis was to find from beam theory an expression for the peeling moment at any
interface in a multilayer beam or plate. This has been achieved, and has the advantage that the expression
has a physical explanation that is intuitively acceptable. The concept of moments being transferred across
the interface to cause equal radii of curvature is helpful in understanding the factors that influence the mag-
nitude and direction of the peeling moment at any interface.

In Eq. (14) the bending due to differences in CTE across the interface, was separated from the bending
due to the reaction moments in the upper and lower stack-ups. This separation enabled the consequent sep-
aration of the components of the peeling moment. The composition of the equation for the peeling moment



282 T.D. Moore / International Journal of Solids and Structures 42 (2005) 271–285
is clearly quite similar at any interface. The partitioning of the moment arm into the fractions above and
below the interface is an essential feature of this composition.

By separating the parts of the peeling moment in this way, the relative contributions of the reaction mo-
ments in the upper and lower stack-ups, and those of the axial reactions within the stack-ups become clear.
With this understanding of the components of the peeling moment, the probable direction of the effect of a
change of thickness or material property in an individual layer on the peeling stress at the free edge at an
interface can be estimated, irrespective of whether the layer adjoins the interface or not.

The material properties and thicknesses selected for the worked example were not drawn from reality.
Instead they were chosen to allow a variety of conditions to be examined. All materials were assumed to
be isotropic, and all properties were assumed to be constant with temperature. Clearly this is not the case
in reality; however, the use of material properties based on the secant of the property/temperature curve is
an acceptable substitute for the purposes of first-order estimates. The Y-displacement data for the point at
the free end of the interface in question is a useful benchmark. The data from FEM of the independent
layers concurs to within 0.3% with the data computed from beam theory as set out in this paper.

The solution is developed from first principles. Accordingly it can be used in all multilayer situations.
These include clad plates and beams, multilayer assemblies such as the packaging of integrated circuits,
multilayer protective coatings, and the conductor/dielectric stack-up on integrated circuits.
9. Conclusions

A solution has been developed from first principles for the peeling moment in a multilayer beam at a
uniform final temperature. The solution is presented in a form that is easy to conceptualise. This allows
a ready prediction of the probable effect on the peeling moment at any interface, of varying the thickness
or property of any layer.

The solution is generic, and is almost as easy to implement for a complex multilayer beam as it is for a
tri-layer beam. The concepts remain identical irrespective of the complexity of the beam.
Appendix A

The purpose of this appendix is to develop a physical explanation for the content of Eq. (3), viz.
Mp ¼ U
E2I2
q

� L
E1I1
q

ðA:1Þ
Timoshenko (1925) stated that shear arose between the layers close to the ends of the bimaterial beam, and
designated the accumulated shear stress at one end of the layer as the force P. Consider, as in Timoshenko,
the case where the upper layer has the shorter length after a change in temperature. The effect of the shear
action of the upper layer on the lower layer is to compress the axial length of the lower layer; the reaction
within the lower layer is a compressive stress which summed over the cross-section of the layer is equivalent
to a compressive force P acting through the neutral axis of the lower layer.

There is a corresponding effect on the upper layer from the shear action of the lower layer. It is a tensile
force of magnitude P acting through the neutral axis of the upper layer.

Just as the axial stresses within the layers can be replaced by a single force, so also the shear stresses in
the upper and lower layers at the interface can be replaced by statically equivalent forces, both of magni-
tude P. One force acts in the axial direction at the point on the interface at the free edge of the lower layer;
this is a compressive force. The other acts as an axially tensile force at the point on the interface at the free
edge of the upper layer. Fig. A.1 shows free-body diagrams of the right-hand ends of the upper and lower



Fig. A.1. Free-body diagrams of right-hand ends of each layer under temperature change.
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layers (layers 1 and 2). As used by Timoshenko, M1 is the reaction moment within layer 1 and M2 is the
reaction moment within layer 2. The direction of the moment arrows in all cases is the sense of the moment
where the peeling stress at the free edge is tensile. The value is the magnitude of the moment.

This free-body diagram is extended beyond Timoshenko�s work by including for the peeling stresses
which arise between the layers close to the free ends. The peeling stresses acting on one layer are self-equil-
ibrating in the region close to the end and may be represented by a single moment. The moment acting on
layer 2 is designated Mp and its effect is to cause sagging of the layer; that acting on layer 1 has magnitude
Mp, and its effect is to cause the layer to hog.

By taking advantage of the principle of superposition we can examine separately the effects of the axial
forces one pair at a time. Consider first the effect of the tensile forces representing the shear acting on the
upper layer. Let these be distinguished from the compressive forces by labelling them PT, and let the result-
ant moment and bending be labelled MPT and qT.

The action of PT on layer 1 has caused the two layers to bend to qT. The moment MPT is the only force
or moment acting on layer 2. It is transferred across the interface from layer 1 by means of the peeling stres-
ses that arise close to the free edge. Accordingly
MPT ¼ E2I2
qT

ðA:2Þ
layer 1 also bends to qT. The peeling moment MPT promotes hogging and opposes the effect of the axial
forces. Thus
E1I1
qT

¼ M1T �MPT ¼ PT �
h1
2
�MPT ¼ PT �

h1
2
� E2I2

qT

ðA:3Þ
which can be rearranged to give
1

qT

¼ PT � h1=2
E1I1 þ E2I2

ðA:4Þ
Substituting this into Eq. (A.2) gives
MPT ¼ E2I2
E1I1 þ E2I2

� PT �
h1
2

ðA:5Þ
From Eq. (1) of the main text, h1/2 is the upper portion of the moment arm h1/2 + h2/2 between the neutral
axes of the two layers; it can be written as U Æ (h1/2 + h2/2).

Eq. (A.5) may be rewritten as
MPT ¼ E2I2
E1I1 þ E2I2

� PT

h1 þ h2
2

� �
� U ðA:6Þ
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The magnitude of PT is P; the expression in brackets is the total moment arm between the reaction forces of
the upper and lower layers; the product of these is the moment giving rise to the total bending of the beam
to radius of curvature q, viz:
PT

h1 þ h2
2

� �
¼ E1I1 þ E2I2

q
ðA:7Þ
and substituting into Eq. (A.6) gives:
MPT ¼ E2I2
q

� U ðA:8Þ
MPT is the component of the peeling moment that arises from the tensile effect of the shear stress acting on
layer 1. It is equal to the upper fraction U of moment required to bend layer 2 to the full radius of curva-
ture. Even though the tensile stress is acting on layers 1, this moment acts on layer 2 because it is transferred
across the interface by the peeling stresses.

Similarly the effects of the compressive force representing the shear acting on the lower layer may also be
examined separately. Let the resultant moment and bending be labelled MPC and qC.

The moment MPC is the only force or moment acting on layer 1. It is transferred across the interface
from layer 2 by means of the peeling stresses that arise close to the free edge. On layer 2 MPC promotes
sagging and supplements the effect of the axial forces. Recognising that MPC on layer 2 acts in the opposite
sense to MPT on layer 1 it is clear by comparison with Eq. (A.8) that
MPC ¼ �E1I1
q

� L ðA:9Þ
MPC is the component of the peeling moment that arises from the compressive effect of the shear stress act-
ing on layer 2. It is equal to the lower fraction L of the moment required to bend layer 1 to the full radius of
curvature. The sum of the two components of the peeling moment is
Mp ¼ MPC þMPT ¼ U
E2I2
q

� L
E1I1
q

ðA:10Þ
Thus the peeling moment in a bimaterial beam can be considered as the sum of the moments transferred
across the interface; these are the contributions of the reaction in the upper layer to the bending in the lower
layer less the contributions of the reaction in the lower layer to bending in the upper layer.

This is the physical interpretation of the peeling moment given following Eq. (3).
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